
In-Line Detonation Flame Arrester

for stable detonations and deflagrations in right angle design with shock absorber, uni-directional

PROTEGO® DR/ES (series 2)

as well as other international standards.

Special Features and Advantages

higher temperatures upon request.

- minimum number of FLAMEFILTER® discs due to the effective shock absorber
- quick removal and installation of the complete PROTEGO® flame arrester unit and FLAMEFILTER® discs in the cage

The PROTEGO® DR/ES series 2 was developed for higher flow performance at small flange connection. It is approved at an operating temperature up to +60°C / 140°F and an abso-

lute operating pressure up to 1.2 bar / 17.4 psi. Devices with special approvals can be obtained for higher pressures and

Type-approved according to ATEX Directive and EN ISO 16852

- due to modular design the FLAMEFILTER® discs can be individually replaced
- · the right angle design saves pipe elbows
- extended application range for higher operating temperatures and pressures
- · high flow performance at small flange connection
- minimum pressure loss and hence low operating and lifecycle cost
- · cost efficient spare parts

Function and Description

The PROTEGO® DR/ES in-line detonation flame arrester has been used for decades in industrial plant construction because its right angle design offers advantages towards maintenance and costs in comparison to most straight designs.

Once a detonation enters the device, energy is absorbed from the detonation shock wave by the integrated shock absorber (1) before the flame is extinguished in the narrow gaps of the FLAMEFILTER® (3).

The PROTEGO® flame arrester unit (2) consists of several FLAMEFILTER® discs and spacers firmly held in the FLAMEFILTER® cage (4). The gap size and number of FLAMEFILTER® discs are determined by the operating data of the mixture flowing in the line (explosion group, pressure, temperature). This device is approved for explosion groups from IIA to IIB3 (NEC group D to C MESG \geq 0.65 mm).

Design Types and Specifications

There are four different designs available:

Basic in-line detonation flame arrester

DR/ES- - -
In-line detonation flame arrester with

DR/ES- T - -

In-line detonation flame arrester with integrated temperature sensor* as additional protection against short time burning

In-line detonation flame arrester with heating **DR/ES-** H - iacket

In-line detonation flame arrester with integrated temperature sensor* against short time burning and heating jacket

*Resistance thermometer for device group II, category (1) 2 (GII cat. (1) 2)

DR/ES- H - T

Table 1: Din	Dimensions in mm / inches					
To select the	To select the nominal size (DN), please use the flow capacity charts on the following pages.					
NG	80 / 3"	100 / 4"	150 / 6"			
DN	50 / 2"	80 / 3"	100 / 4"			
а	200/7.87	250/9.84	335/13.19			
b	225/8.86	290/11.42	360/14.07			
С	365/14.37	440/17.32	535/21.06			
c1	500/19.69	595/23.43	750/29.53			
d	275/10.83	325/12.80	460/18.11			
е	705/27.76	795/31.30	950/37.40			

Table 2: Selection of the explosion group						
MESG	Expl. Gr. (IEC/CEN)	Gas Group (NEC)				
> 0,90 mm	IIA	D	Special approvals upon request.			
≥ 0,65 mm	IIB3	С				

Table 3: Selection of max. operating pressure					
NG 80 / 3"		80 / 3"	100 / 4"	150 / 6"	
	DN		50 / 2"	80 / 3"	100 / 4"
G.	IIA	P_{max}	1.6 / 23.2	1.6 / 23.2	1.6 / 23.2
Expl	IIB3	P _{max}	1.6 / 23.2	1.5 / 21.7	1.4 / 20.3

P_{max} = maximum allowable operating pressure in bar / psi (absolute), higher operating pressure upon request.

Table 4: S	pecification	of max. o	perating t	temperature
I UDIC T. O	podilioution	oi illux. o	perating	torripor ataro

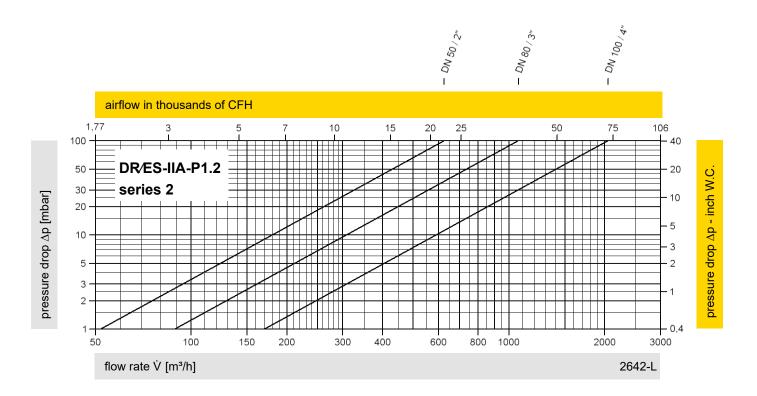
≤ 60°C / 140°F	Tmaximum allowable operating temperature in °C	Higher operating temperatures upon reques
-	Classification	riigher operating temperatures upon request.

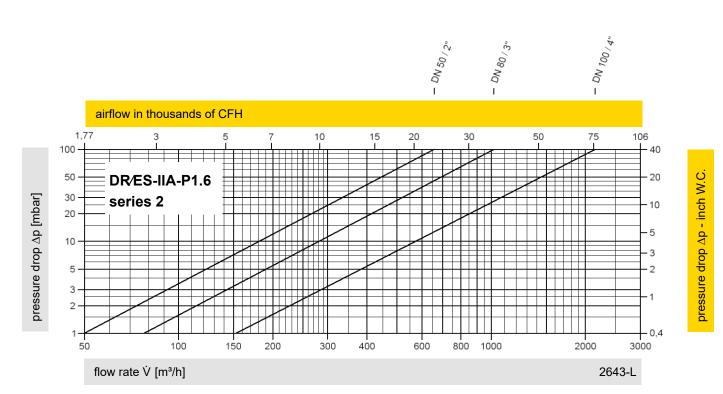
Table 5: Material selection for housing						
Design	Α	В				
Housing Heating jacket (DR/ES-H-(T))	Steel Steel	Stainless Steel Stainless Steel	The housing and the cover with shock			
Cover with shock absorber	Steel	Stainless Steel	absorber can also be delivered in steel wit an ECTFE coating.			
O-Ring	PTFE	PTFE	- an Lon L coating.			
Flame arrester unit	Α	B, C, D				

Special materials upon request.

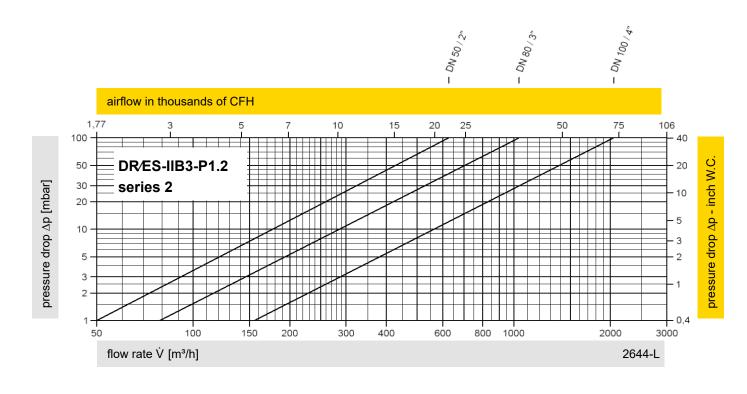
Table 6: Material combinations of the flame arrester unit						
Design	Α	В	С	D	*The FLAMEFILTER® is also	
FLAMEFILTER® cage	Steel	Stainless Steel	Stainless Steel	Hastelloy	available in Tantalum, Inconel, Copper, etc., when the listed housing and casing materials are used.	
FLAMEFILTER® *	Stainless Steel	Stainless Steel	Hastelloy	Hastelloy		
Spacer	Stainless Steel	Stainless Steel	Hastelloy	Hastelloy		

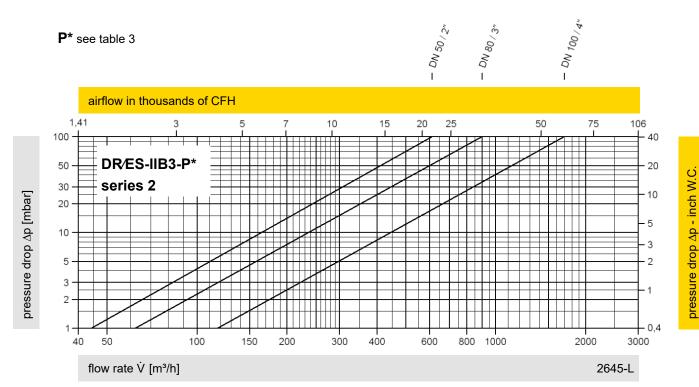
Special materials upon request


Table 7: Flange connection type	
EN 1092-1; Form B1	Other types upon request
ASME B16.5 CL 150 R.F.	 Other types upon request.


for safety and environment

KA / 4 / 0720 / GB 193


In-Line Detonation Flame Arrester Flow Capacity Charts


PROTEGO® DR/ES (series 2)

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow \dot{V} in (m³/h) and CFH refer to the standard reference conditions of air in ISO 6358 (20°C, 1bar). For conversion to other densities and temperatures, refer to Sec. 1: "Technical Fundamentals."

for safety and environment